
Performance Ana]ysis ancl Optimization on the IJC1.A
Parallel Atmospheric General Circulation Model (Me

John 1 m, Robcri  1 {crram
Jet Propulsion 1 -aboratory,  California institute of “J’kchnology,  l’asadcna, CA 91009

John 1 Jarrara,  Carlos Mcchoso
l>cparmcnt  of Atmospheric Sciences, lJnivcrsity of California, 1,0s Angeles, CA 90024

Abstract

An analysis is presented of several factors  influencing the performance of a parallel in@c-
mcntation  of lhc lJCJ .A atmospheric general circulation nmicl (A(iCM)  on massively parallel con~-
puler systems. Several modifications to the original parallel AGCM code aimed at improving its
numerical cfficicncy,  intcrproccssor communication cost, load-balance and issues affcc(ing singlc-
nodc COCIC performance arc discussed. “1’hc impact of some of the optimi?,ation  strategies on the per-
formance  of the AGCM code as we implcmcntcd on several staic-of-the-ar[ parallel computers,
including the lntcl  l’aragon and Cray ‘J31>, is prcscn[ed and analyzed.

1.1 ntroclucfion

‘J’hc climate system is characterized by complex interactions and feedbacks among its
components. General circulation models (GCMS) of Ihc atmosphere and ocean arc among the most
powerfu]  tooJs available for studies of the climate system and its variability, Numerical simulations
performed using GCMS are among the most computationally  cxpcnsivc scientific applications
because several three dimensional physical Jiclds need to be updated at each time step by solving a
large syslcm of partial differential cqnations  governing fluid motion on a rotating sphere, and also
bccausc a very long sinmlat  ion period is required to produce st alisticall  y significant nu mcrical
results. Parallel computers arc thus natural computing tools for GCM simulations.

An at mosphcric  GCM model was dcvclopcd  at lJCI .A by Arakawa and co-workers [1]
during the scvcntics and the model is still being constantly uJlgradc4J  by atmospheric scientists
there. ‘1’hc first parallel implementation of the IJCJ .A AGCM moclcl was dcvclopcd  as a collabora-
tive effort bctwccn 1.awrcncc  1.ivcrmorc National 1.aboratory and the lJnivcrsit  y of California, 1 m
Angeles. The results presented in the paper by Wchncr  ct al. [2] revealed that the parallc]  efficiency
of the code on large numbers of processors (> 100) is mcdiocrc.  in other words, the COCIC  does not
“scale” well to a large number of procasors. 1 lcrc scalability y refers to the rcduc[ion  of execution
time as more processors arc used for a fixed problcm size. ‘J’hc main objcclivc  of our work is to ana-
lyz,c the AGCM algorithm components and its parallel inlplcmcntation  from a computational per-
formance pcrspcctivc,  find bottlcnmks  that hinder the parallel scalability y of the code, and usc better
algorithms and cfficicnt parallel itllj~lcl~lcl~tatioll  strategies wherever possible to n~axinli7c the per-
formance  of the AGCM code on scalable parallel systems.

‘l’his paper is organized as follows: %ction 2 gives a brief overview of the struchlrc of the
parallel lJC1,A A(3CM code and an analysis of its parallel pcrfomancc,  Section 3 discusses our
optin~i7,ation  strategies on the code to improve its performance on massively parallel systems, Scc-
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lion 4 presents a performance comparison bet wccn the modified paral!cl  code and the original one,
Scclion  5 offers some of our thoughts on developing reusable template moclulcs for GCM sinmla-
tions, and finally Section 6 gives our conclusion.

2. Slrudurc  and pcrlormatm  01” Ihc parallel  AGCM code

‘1’hc lJCI .A A(iCM code is a large software package which simulates many physical pro-
cmscs.  ‘1 ‘he reader is referred to Suarcz et al. [3] and refcrcnccs therci  n for a more complctc  descrip-
tion of the representations of the physical processes. ‘J’here arc two major components of the code:
i) AGCM/hydrod ynamics, which computes the evolution of the fluicl  flow governed by the primitive
equations by means of finite-differences, and ii) AGCM/Physics,  which computes the cffcc( of pro-
cesses not resolved by the model’s  grid (such as convection on C1OUCI scales) on processes that arc
resolved by the grid. ‘l-he results obtained by A(Kh4/I%ysics arc supplied to ACKM/1 Iydrodynan~-
ics as drivers for flow simulations. ‘l’he AGCM code uses a three dimensional staggered grid for
velocity and thermodynamic variables (potential temperature, pressure, specific humidity, oLonc,
etc.). This three dimensional grid is formed by the Arakawa C-mesh [1] in t hc horizontal (latitude]
longitude) directions with relatively small number of vertical layers (usually much fewer than the
horizontal grid points). A cell in such a grid is a cube in spherical geometry with vclocit  y conq>o-
ncnts ccmtcrcd  on each of the faces and the tl~crfllo(lyjlarl~ics  variables at the CCII center. ‘1’hc
AGCM/11 ydrod ynamics itself consists of two main components: a spectral filtering parl and the
act ual finit c difference calculations. ‘1’hc filtering operation is needed at each ti mc step in regions
C1OSC to the poles to ensure the cffcctivc grid size t here satisfies the Courant  -Ikicclrich-l  ,cvy (Cl U,)
condition [4], a stability requirement for explicit time-diffcrcncc schemes when a fixed time step is
used throughout the whole spherical fin it c-difference gri d.
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Figure 1. I’;xecut  ion t inm of’ major components in the lICI.A AGCh’1 code

A two-dimensional grid partition in the horizontal plane is used in the parallel in@cmen-
tation  of the lJCI .A ACJCM  model.  ‘l’his choice of grid partition is based on the facts that column
(vcrlical)  processes strongly couple  the grid points which makes the parallclization  less efficient in
t hc column  direction, and that the number of grid points in the vertical direction is usually small.
liach  subdomain  in such a grid is a rectangular region which contains all grid points in the vcrlical
direction. With this grid patliticm,  there arc basically two types of intcrprocessor col~ll~]tl~licatio~ls
involved in the parallel A(3CM  simulation. Message exchanges arc needed among (logically) neigh-
boring, processors (nodes) in finite-difference calcu]at  ions; non-nearest neighbor message-passing is
needed for implcmcnling  the spectral filtering operations. ‘J’iming measurements on the main con]-
poncnts of the original parallel AGCM code, using the 2 x 2.5 x 9 (lat x long x verlical  ) rcsolu-
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tion which corresponds to a 144 x 90 x 9 gricJ, is shown in l;igurc 1.
As shown in J;igure  1, the AGCM  main body consists of’ a hydrodynamics module and a

physics module, with preprocessing and postprocessing parts excluded, Since preprocessing and
pos[promssing  steps arc only performed once, whereas the main body parl is iterated through a time
stepping loop in the ACTCM  simulation, the latter is absolutely dominant in terms of cxecu!ion  ti mc.
Comparing the two modules in the main body, we can see the hydrodynamics part is dominant in
cost especially on large numbers of nodes. Fur(hcrtnore, our timing analysis on the hydrodynamics
par[ indicates that the spectral filtering is a very costly component with poor scalability to large
number of nodes (se~ N’igurc  1). Although the usc of spcct  ral filtering in the LJCI .A AGCM model
improves the computational efficiency of the finite-diffcrcnee calculations by enabling the use of
uniformly larger time st cps, the high cost  of pcrformi ng the filtering scans to offset a large pari of
this performance gain. The inferior performance of the Jiltcring  operation is due to the usc of an
inefficient filtering algorithm and Ihc cxistcncc  of a scvcrc  load imbalance in the filtering stage.

It is clear from I ;igure 1 that in order to substantially improve the overall performance of
t hc AGCM code, some optimi  zation musl be clone first on the tltcring  part of the code [2].

3. Optimization strategies ancl il]]])lcl)lcl]taliol]s  in the parallel AGCM code

‘1’here arc primary two ways tO iI])prOVC thC J.3CrfOI’lIltinCC  Of a JX3f’dlC]  code rll Illli ng on a
distributed memory rncssage-passing computer. Onc way is to optimize its single-node performance
by using a more efficient computational algorithm, making more efficient usc of cache or clin~inal-
ing rcdu ndant  operations in the code. Single. node optimiz,ations can usually bc achieved by rest ruc-
turing the data s!ruc{ures and other computational parts of the mdc. Another way is to improve its
scalability y to large numbers of processors so tha[ onc can cit hcr reduce the solution ti mc for a large
problcm by using more processors, or can SOIVC increasing] y larger problems with more processors
within a fixed amount of tirnc, l’hc scalability y of a parallel code is affcctcd  both by the ratio of conl-
munication  cost to computation cost and the dcgrcc of load imbalance in the code. As stated above,
our timing results indicate the cost of spectral filtering procedure is a dominant part in the parallel
A(KM code cspcciall  y when running on a large number of nodes. We therefore focused our first
effort on improving the ovcral I performance of the filtering part in the AGCM code.

3.1 ) Spcclral  filtering in lIIC llC1.A  AGCM  model

“J’hc filtering algorithm used in the lJCI ,A AGCM  model is basical  1 y a set of discrete l/ou -
ricr filters specifically designed to damp fasi-moving  gravity-inertial waves near the poles. q’hcsc
wave modes bccomc nutncricall  y unstable when the 0‘1. condition is violated in the vicinit  y of the
po]cs as a result of the incrcasing]y  smaller zonal grid distances as onc approaches the poles in a
uniform longitude-lat  iludc grid. ‘1’hc filters contain a latitudinal dcpcndcnce but arc applied over the
cmlJ~lctc  longitudinal domain on every vertical layer. As discussed in [1], the tiltcring  oJ~cration
takes the form of an inverse IJouricr transform in wavcnumber space as
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where $(s) is the lkmricr  transform of a generic variable $(s) to be filtered, ~(s) is a prescribed
function of wavcnumbcr and latitude, but is independent of time and height. In particular, lwo types
of filtering arc performed in the lJCI .A AGCM code. Onc is the so called “strong Jlltcri ng” which is
applied  to about one half of the latitudes around the po]cs in each hemisphere; the other is a “weak
filicring” which is applied to about one third of the latitudes around the poles in each hemisphere.
‘J’hc  convolution theorem for lhrrier transforms states that the filtering as defined in (1) is nlathe-
matically  equivalent to the convolution

($’(i) = ~ S(n)($(i - n ) . (2)
.$=]

In the original AGCM code, filtering was performed using the convolution form in (2). IJI its paral-
lcI i~)ll~lcll~cntatio~l,  the summation defined in (2) was inq>lcmcntcd  in several ways, involving either
cal~~il~tlllicatio~ls  around “processor rings” in the latit  udi nal direction, or communicant ions in binary
t rem [2]. 1,ctling N denote the number of grid points and P the numtwr processors in the lat it udinal
direction and since no partial summation is pcrformcxl during the data transfer, the ring approach
requires l’log P messages and a total transfer of NP data clements; the binary tree requires 0( 2P)
messages and a transfer of O(NP + N log}’) data clements [2].

‘1 ‘he high cost of the filtering compared tot he rest of the hydrod ynamics module as shown
in 1 iigurc 1 stems from two imporlanl factors. ‘J’hc first is the usc of umvolution  formation (2) in
physical space for the filtering. Assuming a tllrw,-dir~~cllsiollal  grid for filtering has dimensions
N x M x K, where N, M, K, arc dimensions in latitudinal, longitudinal and vcrlical directions,
respective] y, the computational cost of doing convolution on the grid is of order 0 (N2 x M x K),
whereas the cost for the rest of hydrod ynamics  COCIC is of order O(N x M x K). ‘J’hc second is the
cxistemce  of a scvcrc load imbalance caused by the fact that only subdomains at high latitudes
require filtering. Solutions to these probhms arc somewhat obvious: (i) usc the fast Irouric.r  trans-
form (l U’-I’) instead of performing direct convolution for the filtering, and (ii) perform load balanc-
ing before filtering by rcdistribut  ing cJat a to bc filtered from processors cxmai ning high lat i[udc
subdomains  to processors containing low latitude subdomains  which either have very little filtering
to do or arc completely idle during the filtering stage.

3.2) IMfkicnl  pantllcl spectral filtering

Since the spectral fillcring  is applied to lines of grid points at high latitudes and the grid
ckxxmposit  ion for tbc UC] .A AGCM code is a two dimensional dccon]posit  ion in the horizontal
plane, the I~JV’ operation also requires intcrprocessor  col~)t~ltlllicatioll,  ‘J’here are at least two possi-
bilities  to parallcliy,c  the Flrl’ filtering. One is to develop a parallc]  one dimensional ld ~1’ procedure
for processors on the same rows in the processor mesh, so thai this procedure can be applied to
every ]inc of data to be filtered. T’hc second approach is to partition the data lines to be Jltcrcd and
redistribute thcm among processor rows in the latitudinal direction so that 1 I’1’”J’s  on each data line
can be done locally in each processor. ‘J’hc second approach essentially involves a data array trans-
pose. I’hcsc };1 ~“1’ Jlltcring  approaches have a computational cost of O(N x log  N x M x K). Again
let ling N denote the number of data elements and P denote the number of procfissors  in the lat itud i-
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nal direction, the approach using the parallc] one dimensional 1~1 rl’ requires 0(1’logP) messages
and a transfer of O(N logN ) data elements, while the approach using IU;’1’  with data transpose
requites 0(P2)  messages and a transfer of O(iV ) data elements. ‘1’hcrcfore the first approach
requires fewer messages but exchanges larger amounts  of data than the second approach.

We chose to in~plemcnt the second approach for the spectral filtering in the AGCM  code.
‘l’he main reason for our choice is the relative simplicity of in~plmcnting  the data transpose and the
possibi]it  y of using highl  y efficient (somct imcs vendor provided) 10 r]’ library codes on W11OIC  lat it u-
dinal data lines within each processor.
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]~ig[lrc 2. An illusf ration of (Ialti row re(iistribul ion for a ](M(] bahtncd  filtering.

3.3) l.oad-balancd ptiralld  FIT fil[ering

“10 solve the ]oad-balance problem in filtering, we need to rcdiswibute  the data rows to be
filtered along the longitudinal direction. In the lJC1 .A AGCM code, the spectral filtering is per-
formed at each time  step before the finite-difference procedures arc called. Weak and strong filter-
ings are performed on different sets of physical variables, one variable al a time in the original
AGCM code. lb maxitnize  the performance efficiency from the load balance procedures, wc reor-
ganized  t hc filtering process so that all weakly filtered variables are filtered concurrcntl  y, as arc all
s{rong,ly  filtered variables. This change is possible because there is no data dependency among
weakly fiherecl  variables, nor among strongly filtered variables in the filtering process. l~ascd  on
these considerations, wc decided to implement a generic load balancing module  which dots the fol-
lowing given an M x N processor mesh, with M processors in the latitudinal direction ancl N pm-
ccssors in the longitudinal direction, with 1. variables to be filtered (wcakl  y or strongly), each wi(h
I<j (~ = 1 ...1.) rows of data m bc filtered, the goal of load balancing is to redistribute the clata rows
in the ]ongitodinal  direction so that after redistribution, each procxxsor  will contain approximately
(since total number of data rows to be filtered arc osually  not divisible by N)

[’)i I/j / N (3)

j=]

rows to be filtered. If it could  be assumed that exact] y half of the data rows in one hemisphere arc to
be filtered, which is the case for the strong filtering in the AGCM code, the implementation of data
redistribution for load balancing would be a relatively simple task. All that woLlld  be required in this
case is to redistribute data rows in a way which is symmetric about  the rnidcl]c latituclc line in each
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J~igurc 3, Data row transpose in latitude (Iiredion  following lhe row redistribution

shown in Vigure 2.

hmisphcrc. Since we need to do load balancing for both weak and strong filterings, a more general
scheme is needed. We therefore decided to inq~lcmcnt  a code module which can produce a balanced
load in (3) regardless of the number of rows to be fillcrcd in each hemisphere. 1 tigurc 2 shows an
example of how data rows for three variables arc redistributed in a hemisphere in an M x 8 proces-
sor mesh.  l’hc load redistribution is followed by a data row transpose and redistribution among pro-
cessors in the latitudinal direction. 1 ‘igurc 3 shows the data row transpose performed aft cr the row
rcdist ribution shown in Pigurc  2. The actual }(1 rl’ filtering is performed on data rows after the data
transpose, which is then followed by inverse data movements to restore the data layout which
cxis!cd  prior to the filtering.

1 he 10 the gencralit  y required for t he load-balancing and parallel 1 ;J ‘-l’ module, some non-
trivial set-up code is needed to comtruc{  information which guides the data movements for the load-
balancing and load-balanced parallel JiJ4”J’ at each time step of hydrodynamics calculation. “1’hc  set-
up involves substantial bookkeeping and intcrprocessor  co~l}~~l~lllicatiol~s.  Its cost is not an issue for
a long AGCM simulation since it is done only once, and its cost is also nearly independent of
AGCM problem size.

3.4) l,oad  balfincing flie pl]ysics component

‘J’hc physics parmcteriz,ation  componcnl  h) the ACiCM  code consists of a large amount of
local computations with little  inlcrproccssor  communication required Llndcr a horizontal parlition of
the grid. ‘J’he measured parallel efficiency of the physics componcnl  with a 2 x 2.5 x 9 grid resolu-
tion is about 61% on 240 nodes on Gay ‘1311.  Since there is no communication cost, it is only the
load-imbalance in the column physics processing that drags down the parallel efficiency. “l’he distri-
bLltiO1l  of computational load in the physics conlJ>oncnt  varies dynamically with sJ~acc  and lime in
the AGCM simulation. ‘J’he amount of computation required al each grid point is dc(crmined by
several factors, including being whether day or night, cloud distribution, and the amount of cLmnlhls
convection determined by the so-called conditional stability of the atlnOSJ)hCrC.  Adding to the diffi-
culty of physics load-balancing is the unpredictability of the cloud distribution and the distribution
for cumulus convection, which in]Jiics an csti mation of computation load in each processor is
rcqu i red before any efficient load-balancing scheme can proceed.

Several J)ossibilitics  of achieving load-balancing have been considered, One way to
achieve a balanced load distribution is to perform a cyclic data shuffling among all processors. SuJ>-
posc t he total number of processors is N, each Jwocessor  divides its Jocal data to be processed into N
pieces, sends (N - 1 ) pieces of the data to other processors, and receives (N - 1 ) J~icccs  of data
from other processors. Pigure 4 shows such a data shuffling among four processors. l’hc cm~J~lctc
data shuffling as shown in liigurc 4 guarantees a balanced load distribution as long as the load distri-
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bution wilhin  each processor is C1OSC to uniform in space, a reasonable assumption when N is large.
‘lW main drawback of this approach is the cost  of performing all-to-all communications with a
cn~~ll~lexityof0(N2),  and thcdivision  ofcachlocal data inlo Ncqual picccsfor  Nproccssorsdocs
not seem to be compulationally  efficient when N is large.

An altcrnativeto  a complctc  data shuffling for load balancing, but also guaranteeing a
good load distribution, is to use an approach similar to the one discllsscd  in the previous section for
filtering operations. I;irst,  the computation load for each processor needs to bc computed or esti-
mated by some means. 1 Et us look at a specific example for the ease of our discussion. 1 ligure  5
illustrates the steps needed to balance the load among four processors, ]n 1 Jigw’c 5A, the computing
load in each processor has been figured out in some way, ancl an integer weight is assigned for each
local load. All the nodes are then assigned a ncw id through a sorting of all local loads. “1’hc  sor(ing
of node ids is performed 10 simplify subsequent data movement which attempts to minimize the
amount  of interproccssor  communication. With the ncw node ids and weights of local load avail-
able, the required data moves can be carried out in a way similar to that for balancing the filtering
load, as shown in l;igure 511. liigme  SC shows the ncw load distribution after the data movement. It

Node id = 1 Node id = 2 Node id =3 Node id =4
lx)a(t = 65 1 w+(I =24 1 mad = 50 l.oa(l = 15

A: initial load distribution will] original node id.

Ncw node id = 1 New node i(l = 3 New node id =2 New node id =4
l.oa(l = 65 load =24 I.oa(l = so 1AM(I = IS

14 4 11 4 4
1 . ..-.”:--:::::fi::-J -... ----- ‘---: -:-:_n::-J?  I

11: No(1c i(ls arc sodd according 10 local data loa(ls.
Rcquird data moves arc shown.

Node id = 1 Node id = 2 Node id =3 Node id =4
1 ,oa(l = 39 Imd = 24+14 1 ,oad = 39 lJoa(l=15+ll+12

C: load ciistrihtion  after IOa(l-balancil)g.

l~ig~lre S. SCl)cnK! 2: An alternative wl)icll optin]ixes col~]l]][l!~icatio]l  cost.



can be seen that the communication complexity of this load-balancing approach is 0(N), a signifi-
cant in}provcmcnt  over the complete data shuffling in scheme 1. large overhead, however, is
incurred in making the optimized data moves possible which invo]vc a number of global c.onm~uni  -
cat ions and a substantial amounl of local bookkeeping.’l’his overhead cost was not a serious perfor-
mance  issue in the load-balancing for tiltcring  because it is the cost from a preprocessing slcp tha[ is
done only once during  the entire exezution  of the AGCM code,  but the overhead for physics loacl-
balancing may not be overlooked because it is associated with the cost of each physics load-balanc-
ing. In addition, a decomposition of a local data load into many parts with different wcighls  may not
be a convenient thing to do.

‘l’he analysis on load-balancing schcmc 2 and 3 leads us to thi nk that it may be mom prac-
tical in our case to devise a load-balancing strategy that may bc less robust (if it is applied only

Node id = 1 N()(IQ id = 2 N(Ide id =3 N()(lc id =4
I,oad = 6S lmd = 24 I.oad = 30 IA)ad = 1s

A: ]nititil  I(M(I (Iisfrilmtion in each processor.

Node id = 1 Node id = 2 Node  i(l =3 N(Kle id =4
Rank = 1 I-!allk = 3 Rank = 2 Rank = 4
Load = 65 l.oa(l =24 load =30 l,oad = 1S

I A I A

II: Nodes are assigned ranks. Firsl Imirwisc data moves are shown.

Node id = 1

I

Nde id = 2

I

Node id =3
Rank = 1 Rank = 3 Rank =4
I.oa(l = 40 l.oacl =27 1,oa(l  = 27

Node id =4
I{auk = 2
1 ,oa(l =40

L ._d t..-.-! ----- ----._.l
C: Nodes are assigned ranks. Smmd  pairwisc (lat~ moves are slmvn.

I Node id = 1 I N()(lc id = 2

I

Node id =3
load =34 l.oa(l = 27+6 lx)ad = 27+6

Node id ❑ 4
lx)acl =34

11: load (Iistribulion aflm- second data nmmwnt.

Figure 6. Scheme 3: l.oad+alancing  wi[tl pairwisc dah exchanges.

once) but more cost-efficient and easier to implement. ‘J’hc  approach that wc currently decide  to
adopt requites only pairwisc intcrprocessor communications ford at a movement and a small amount
of bookkeeping. The steps for this scheme can still be illustrated by using the previous example for
four processors, as shown in Figure 6.”1’hc schcmc also begins with an evaluation of the local load in
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each processor, as shown in Figure 6A ‘l’he data load is sorted and a rank is assigned to each proces-
sor as a rcsu]t of the sorting, and a pairwisc  data cxchangc  between processors with rank i and rank
N - i + 1 is initiated, as shown in liigure 611, IJuc to the limitation of pairwise  data cxchangc,  the
rcsu]tcd load distribution from the first data move may not be satisfactory. If this is the case, the
load sorling and pairwisc data cxchangc can bc repeated once as shown in Vigure 6C. 1 iigurc 611
shows the load distribution after the second data move. Since each load-balancing cycle (sorling and
pairwisc data moves) is relatively low in cost, the cost of performing it a fcw times could still bc lCSS

than that of the previous two schcmcs.
‘J’hc number of times nccdcd  for sorting and pairwisc communication in schcmc  3 to

achicvc a satisfactory load-distribution clearly clcpcnds  on the initial load distribution, ‘M evaluate
the cffcctivcncss  of scheme 3 for load-balancing the actual physics component code, wc first in@c-
mcntcd the load-sorting pail  in schcmc 3, and usc it as a tool to J)crform  load-balancing on the phys-
ics conlJ>oncnt  and to evaluate t hc result without actually moving the data arrays around. ‘Jb
csli mate local computing load in each processor, a timing on the previous pass of physics cony> o-
ncnt was pcrf’ormed at each processor and the result was used as an estimate for the currenl  physics
conlJnlling  load. ‘lhblcs 1 -3 show the simulation results on 64, 126 and 252 nodes on Gay ‘J31>.
With P J~roccssors, the J>crcxmtagc  of load-imbalance shown in the last column of the tables is
defined as

Average] ,oad =
[51’Oca]]Oa(JP

PerccntagcOfl  .oad Inlbalancc = (Maxi.oad - Avcragcl,oad)
Avcrag,eI.oad

‘Jhblc 1: l.otid-bal~ncing simulation for physics wi(h a 2 x 2,S x 29 grid
rmolut ion on a 8 x 8 node array  ON Clay 1’31)

.—.

Code status

Before load-balancing

After first load-balancing

After second load-balancing

, .——-. –.———–——
Max load Min 1 oad % of load-
(sccond) (second) i mbal ancc

4—-—-4– --- .-—-----l
7.7(I I 6.20 I 9% I.-
7.10 1’----”-””- “- -  ‘-”” “- -  ‘ -  I6.30 I 6%

– — 1 .1—.————1

‘Jhblc 2: l,oad-bnlancing  simulation for physics wi(ll a 2 x 2.5 x 29
grid resolution on a 9 x 14 node array on Cray  ‘1’31)

I]*Ei:iz$zf::

After first  load-balancing

After second load-balancing .

9



‘lhble 3: Loa(l-balancing simulation for pl]ysics will] a 2 x 2.5 x 29
grid resolul  ion on a 14x 18 node arrtiy on Cray ‘1’31)

(Me status
Max load Min I -oad % of load-
(SCCO11(1) (second) imbalance

Before load-balanc;~~g‘“”:’’’’1----”’”””’”---”  ‘“”””-- ‘--3.;4 I 1:121-”--””48%

‘-1””- ““”1” 1.70 ‘-T

_——
After tirsl load-balancing 2.20 12.5%
.- .—— -

After second load-balancing‘---1 1.92 I ‘- - - - -1.80 1 6%
l..–. ..— –.–1 . ..- .L. _..— —

Scheme 3 can bc seen as an iterative scheme that converges to a load-balanced slate from a given
initial load-distribution state. ~’he “convergence rate” of the schcmc clearly depends on the initial
slate as the results in lhblcs 1-3  indicate. On 126 and 252 nodes, it can be seen from ‘Ihblc  2 and 3
ihat apJ~lication  of the scheme twice to the J>hysics component can reduce the percentage of load-
imbalance to a reasonable level. One advantage of scheme 3 is its flexibility of making a conlpm-
mi sc between the cost and accuracy of load-balance. A pairwisc data exchange is only needed when
the load difference in the pair of nodes cxcccds  some tolcrancc,  and the iteration can stop as soon as
t hc percent agc of load -imbal  ancc falls within t hc tolcrancc.

3.4) Singh’ node performance opl imimlion
With the use of the load-bal  anccd 1 U rl’ filtering module, we have been able to rcducc the

cost of filtering significantly in the parallel AGCM code (see Scc[ion 4). With the 2 x 2.5 x 9 I’cs-
olution on 240 nodes, for example, the filtering cost dropped from 49% of the cost doing hydrocJy -
namics  part to about 2J fIo. Our timing of the code indicates the COS[ of communication for
exchanging values at ghost grid poinls for the finite-ctiffcrcncing is relatively insignificant, usllally
around 10% of the cost of the hydrod ynamics  component on 240 nodes. With a ]oad-balancd  phys-
ics component, wc expect the overall cxccut  ion time of the AGCM  coctc be reduced by 10-15% on
240 nodes. We now turn our discussion to the issue of single-node performance optimi~,ation  for the
AGCM code. As is typical for a real-world aJ>J>lication,  the overall performance of the J~arallcl
AGCN4 code is well below the peak J)crformanccs on both lntcl Paragon and Gay 131) nodes,
which is usually an indication that the cache efficiency of the code is poor. Our main goal is to
i mprovc  the single-node performance of the code - minimize the cxccu(ion time of the code on a
single processor - with a lllacilillc-irld  cJJclldcllt  and Jwoblcm-sii’,c  robust aJ~proach  (i .c. wit bout
resorting to any assembly cocling).  We selected a dry-convection routine from the hydrodynamics
conlJJoncnt  and a cu nmlus connection rouli nc from the Jlh ysics component as the represent at ivc
candidates for single-node performance analysis and oJXin~ization because of the heavy local com-
Jmting involved in these routines and their cost weights in their rcsJJcctivc  conlJ~oncnts.  Our optinli-
~,ation  cfforl started from improving some of the more obvious code segments, such as eliminating
or minimizing redundant calculations in nested 100JM, replacing some loops by Basic 1.incar  Alge-
bra Subroutines (111 .AS) library calls for vector copying, scaling or saxpy opcrat ions. We also tried
to break down some very large loops involving many data arrays in hoping to rcclucc the cache miss
rate. When aJ~plying  these strategies to the dry-convection routine, wc were able to cut down its cxc-
cut ion time on a single Gay ’131) node by about 20%.
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B] ,AS routines are usually faster  than programmer’s hand-coded loops in a high-level pro-
gramming language for nlatrix-vcclor  data processing because they were opti  miml for pipclining
cnmpuling  and cache eftlcicncy  with assembly coding. It seems, however, difficult for us to utilize
the 111 .AS library beyond some 10W-1CVCI routines in a few places of our code. 1 n a code based on
finite-diffcrencing schemes as the A(iCM code, it is usually hard to cast major par[s of computation
in(o matrix-vcc[or  t ypc operations. lns{ead, wc found thal a large part of the computations in our
sclcc[cd  routines can be convcrkd  into what we call “pointwisc v~tor-~ll~llti~~ly”,  which, for cxan]-
plc, has the form in a two-dimensional nested loop:

IIOj=l, N
l)oi=l, M

C(i, j) = A(i, j) x }](i, .Y)
I:NDDO

liNIXIO
where the subscripts can be either a constan(  or equal to j. ‘J’hc computation in the above loop is not
one of the operations defined in the current B] .AS library (e.g. on Gay ‘1311). Wc think one possi-
bility 10 achieve good performance for such a loop is to dcvc]op an optimized library routine in
asscmbl y 1 angu age which can recursive] y perform the fol Iowi ng opcrat ion on two vectors
(1 = {fll, a2, ..., a,l} and h = {hi, b2, . . .. b.ll}

a 8 b= {(711)1,  (izbz, . . . . 0,,,1 ),,,, 0,>1+ ]b], . . . . (12,),1),,,, . . . } (4)

where it is assumed that n is divisible by M. ‘1’hc interface of the rou[ine can be such that it takes as
input  a set of data arrays and returns the result array. If some optimization on stich a pointwisc  vcc-
tor-nmltiply  operation is possible in terms of cache and pipclining,  there is a good chance for us to
i mprovc  single-node pcrformancx  for the ACXM code in a pcmablc  and robust fashion.

‘1’hc general idea of cache efficiency optimization is to explore data locality of an applica-
t ion so that the data existing in the cache can be reused as much as possible. In a finite-d iffcrcncc
application such as the AGCM code,  a major parl of the local computations lie in the evaluations of
finite-difference equations whic}l  involve a number of discrete fields  corresponding to physical vari-
ables defined on computational grids. At each grid point indexed by (i, j, k), the following Iypc of
code frcqucntl  y occurs

r(i, j,k) = l)lfl(i, j,k)+ . . . +D,,,f,,,(i, j, k), (5)

Whcrcj (i = 1, . . . . m) are discrete fields and D; (i = 1 .,. m) arc stencil operators. Although it seems
natural, as done in the AGCM code, to allocate storage corresponding to discrete fields  in (5) as sep-
arate data arrays, the cache efficiency in computing (5) on those separate arrays is usual t y rat hcr
poor when the typical array size is much larger  than the cache size or when clata stored in a large
nun)ber of arrays are referenced in a statement of form (5), because in sLIch cases the cache-miss
rate can bc very high. One alternative to allocating separate data arrays is to dcclarc  a single away
for storing all the discrete fields in (5). ]n a l~ortran  code, one can thus define an “block-ori-
cntwl’’array  of the form

f (m, i dim, jdim, kflim). (6)
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‘1 ‘IIC usc of a data array of the form (6) to evaluate (5) could, in principle, rccluce the cache-miss rate,
because grid variables in the neighborhood of a ccr(ain  cdl arc stored closer to each other in nlcnl-
ory than the case when separate arrays are uses. When data arrays of the size 32 x 32 x 32 in form
(4) arc used, our test CXXIC evaluating a seven-point I .ap]ace stencil applied to several discrctc fields
showed a spcxxl-up a fac(or  of 5 over the usc of scparalc arrays on the lntcl  Paragon, and a speed-up
faclor of 2.6 was achieved on Cray’131J fort hc same size data arrays. JMcouragcd by this result, wc
tried the usc of block array in the dry-ccmvcclion routine, where a about a dozen of threc-clinlcn-
sional arrays were combined into onc single array. A performance comparison between the COCJC
with block array and the code with separate arrays did not show any advantage of using the block
array. 1/or some siycs  of dat a array, the code with the block array undcrpcrformcd the code with sep-
arate arrays. A more careful examination of the dry-convection routine rcvcalcd  some conflicting
factors regarding the selection of a good data structure for cache efficiency. A basic fact is that the
dry-convection routine cent ains many different t ypcs of array-processing loops which rcfcrcncc  a
varying number of data arrays. “l’he block array may bc a bct[cr data structure for cache efficiency in
a loop rcfcrcncing  all the grid variables in the block array,  but it could be a worse data structure
(than the scparalc arrays) for code in other loops wbic.h  only rcfcrcncc  a small subset of grid vari-
ables in the block array. It is thcrcforc  not easy to Jlrcdict  Ibc overall cffczt  on the cache perfor-
mance for a non-trivial code when a block array or separate arrays arc used. A side-effect of using
block array is the poor readability y of the code, which makes it cr~or-prone  and harder to debug.

Ihble 4: AGCM 1 imings  (sccoll{ls/sill)tllalcfi  day) with old fillcring module on lnlel  Ptiragon
grid rmolulion~  2 x 2.5x 9

~-- -—
—T

Node mesh l>ynamics

r “-- ““-1“--- ““’””-=””-”---”-”-l x l- 8702

t- 4 X 4 7-”-’” “-””-848.S”
I ---–-—— -—–- -4
I 8 x 8 I 356

t--”” ‘“””----8 x 3 0 3 186

IJynamics
Speed-up

1.0

10.3

23.8

46.8

‘lbtal time
(I)ynamics and

Physics)
_-. —

‘“14010 ‘-

1177 -

443.5

216

‘Ihblc 5: A(3CM timings (sccol)(ls/sil]l(tltile(l  day) willl new filtering module on ]nld l’aragon
grid rcsolulion: 2 x 2.5 x 9

I ‘“----”--”---”-Nodc nlCSh

1--- ._..1X1

4 x 4

8 x 8

8x30

.— ~-—— ..- .— ., ..—.

l>ynamics “lbtal time
IJynamics

SpCCd-UJ> (Ilynamics  and
Physics)

639.0 -

T -” - -” - ‘--””--”12.6 I 992 .6  “““

I “--””-
—

2 0 7 . 5 38.9 1 306.0

87.2 ‘1---- “–-”’ ””-”-”92.6 t-‘“1 1-9.0
1.. 1
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show that the scaling of load-balanced 1 U rl’ filtering for the 9-layer model is abou[  4.74 JU nning on
240 nodes versus running on 16 nodes with a parallel efficiency of 32%, and the scaling of load-bal-
anced filtering for the 15-la yer model is about 5.87 with a paral  Icl efficiency of 39%. ‘1’hc improved
efficiency for the 1 S-layer model reflects the higllcr ratio of local computational load over intcrpro-
cessor communication cost when more vertical layers are added to the AGCM model. Although not
showJ~  here, we found the scaling of the whole AGCM COCIC  for the 1 S-layer model is about the
same as the 9-layer model. ‘l’his could bc the result of the fact that in the 1 S-layer model, some addi-
tional  load-imbalance is introduced in other parts of the AGCM code. We would even expect better
scaling be achieved for the parallel filtering as well as for the overall AGCM code when a 1x1.25
by 15-Jaycr version is used. The execution times also consistently show that the parallel AGCM
code runs about 2.5 times faster on Gay 31) than on lntcl l)aragon.

‘lhblc 8: TOltil fillcring  limes (sccfJ]l{ls/si]ll[lIalc(I  day) on lnld
l’arqym for lhe 2 x 2.5 x 9 grid rcsolufion

1---- ‘-””--- ‘“ ‘“-”
4 x 8 I 240.0

.
8 x 8 189.5

I 4X30 I 99.6
~—–  4 - - - - -

I 8x30 I 90.0

88.0 53.7

66.4 ““ ‘-“ 38.2”- “““

‘--””-1
—

43.7 22.2

‘lhble 9: Total  filtering t imcs (scco]l(ls/si[lltlIalc[l dtiy) on Clay  ‘1’31)
for the 2 x 2.5 x 9 grid resolution

~—— T —  ‘“--—- ‘– ~- -—.- —--------- -------- ~-—-- ..-–—-- .--—-.. .

I Node mesh I Convolution I IV~J’ without I IV]’ with load
load balance balance

F“--4=+-’~s”””t=t””’--””’-4=6=’’t’’-=-=-
t 4 x 8 1 - - ” ” ” - ” - - - ” - ” - - ” -96.0 1 35.2 1 21.5

I 8x30 I 36.0 I 15.0 I 7.4

S. Sdlwarc design  issues for GCN4 simulations

Since GCM simulation codes are typically large software packages containing tens of
thousands lines of code, another goal of our work is to develop por(ablc  and reusable library n]od-
UICS and extensible template codes which will bc useful for GCM type applications. ‘1’hc original
parallel AGCM wde was implemented in 1{77  with a generic message-passing interface, ‘J’he  por(a-
bil it y of the code was achieved by using macros for message-passing protocols and memory alloca-

14



‘Ihble 6: AGCM timings (sec{Jl~ds/sillllllatc{l  day) with old filtering module on Cray T3D
grid resolul  ion: 2 x 2.5x 9

EEi:13??‘1’nblr  7: AGCM timings (scc(jll(is/sil~ltllal~){l  day) with old filtm-ing  module on Cray “1’31)
grid rcsolul ion: 2 x 2.5 x 9

~:“‘:1

l)ynamics ‘Ibtal time
Node mesh IIydrod ynamics sped-up (1 lynamics  and

Physics)
_—. -—— —

1X1 3230 1 .(I 4990
.-

4X4 256 1 2 . 6 397

8 x 8 83 3“8.9 122
—..

8x30 35 92.3 48 ““”

4. I’wf’ormamc  studies

‘Ilmings  have been pcrfornmd  on the lntc] Paragon and Cray ‘131> (Some timing on IBM
SP-2 were also performed, but arc not shown here) for the parallel AGCM code with the new fihcr-
ing module and the results were compared to those from the original code. ‘1’hc message-passing
portability of the filtering module was achicvcd  by using Ml’] protocols in the code. Since the
lJCl ,A AGCM code uses a NI!’1C3NJ input history file and wc do not have a NIH’CIY( library
usable on Paragon, we had to develop a byte-order reversal routine to convert the history data to usc
on ]nt c1 Paragon. We here onl y discuss t iming results obt ai ncd on 1 ntel Paragon, which qualit  ativcl y
applies to Clay q’311 and 1 BM SP-2 as WC1l.  “lhblcs 4-7 show comparisons of cxccut  ion time for the
hydrodynamics part and for the cnlirc A(KTvI code (including physics part) using the 9-layer model
on 1 nt c1 Paragon and Gay ‘131J. ‘J’ablcs 8 and 9 show a comparison of costs for doing the filtering
using different versions of filtering module with the 9-la ycr model, and l’ablcs  10- 11 show the
costs of filt  cring in the 15-layer model on Paragon and ’13111/or all the timing runs, a 2 x 2.5 hori-
zontal  grid resolution is used. In comparison to the old AGCM code, the hydrod ynamics  component
in the new code is a lit[le more than twice as fast on 240 nodes. The scaling (or speed-up) of the
entire code also improved significantly, which is clearly a result of the load-balanced filtering. ‘1’he
load-balanced Iilrli filtering module runs about five times faster than the old convolution filtering
lllOdU]C  OJ] 240 nodes for both the 9-layer model and the 1 S-layer model, ‘J’ables  8-9 and 10- 11
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,.1 . i <n r., . , c,. .-. ?-. — .: . . . ..- /-- . . . . . . .1..  /- . . . . ..1...-.1 .1 . ...\  . . . . 1 ..4..1 1> . . . . . . . . . . . . r....
]~~1~ IV: Jolktl  1111(’1-111~  11111(’S  \SCColl[lS/Sll  ll(llfll V(I (Ifl~)  Ull Jlll~l  l-ZJI iJ~ull luI

lhc 2 x 2.5 x 15 grid resolution

Ft;i;l:::

Node mesh convolution
1/1 1“1’  wit bout FF1’ with load
load balance balance

4 x 4 802 304 2.21
.— —

4x8 “- 566 205 118 ‘“

8x8 - 422 150 “- 85

4X30 217 9 ( ” 49
.-

8x30 188 “-” - 81 3’7

Table 11: Total filtering fimcs  (st:co]l(ls/sitlllilale(l  day) on (Jay 1’31) h’
tlw 2 x 2.5 x 15 grid resolution

—.

Node mesh Convolution

‘“-””::i:t”-

1 q rl’ without ltl~l’ with load
load balance balance

4 x 4 320 121 88

4 x 8 226 ‘- 82 47

8X8 168 60 34

4X30 86 38 19

8x30 75. 32:” 15
-.

t ion protocols. l’his macro approach unforlunatcl  y also introduced some complications to the code
maintenance and modifications. 1 Iirst the code needs to go through two macro preprocessors before
a standard liortran  compiler can be applied, which can cause problems when porling the code to a
new machi nc bccau se macro preprocessors may behave d iffcrcnt  1 y. 1 imbcdd ing macros in the code
also make changes to the cock error-prone if one is not familiar with how macros arc to be
expanded. We think Ihe portability of the AGCM code can be achieved in a simpler and more reli-
able way. Our approach also defines generic interfaces for possibly ~llachinc-dcl~elldcllt  operations
such as message-passing protocols and memory allocation, but the il~~j~lclllcl~tatio~l  of the intcrfaca
is wrapped in a small number of subroutines. ‘l”hcsc subroutines arc sclcctivcJy  conlJ~ilcd deJ)cnding
on Ihc sJwcific machine where the code is to run. We bclicvc our approach can reduce the n~achinc-
dcpcndcnl  porlion  of the code to a minimum and thus make maintenance and modification of the
code easier, We are also idcnt  if ying common algorithms and operation components from GCM
aJ~plications,  and develop code modules which are reusable and extensible (as aJ>Jiication  tcnl-
p]atcs)  in different GCM applications. in our view, candidate components for GCM applications
i nchdc efficient finite-diffcrcncc kernels, parallel spcct ral filters, commu nicat  ion mod UICS for
exchanging ghost-point values at domain-partition bouncJarics,  enforcing (physical) periodic bound-
ary condition, load-balance modules, and fas[ (parallel) linear system solvers for in~Jiicit  tinlc-dif-
fcrcncing  schemes. We believe, within the scope of GCM applications, these code con~J~oncnts  can
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bc cJcvclopcd  in a unified, highly modular and efficient manner, and wc think an objected-oriented
approach (at leasl  for building the infrastmclure  of a gencxic  CiCM application) inqicmcntcd in an
aclvanecd  scientific con~Jmting  language like 1 ;ortran 90 can be used in the code development. With
these code components available, the prototyping  and implementation of a new, portable and effi-
cient CiCM  code package for distributed memory parallel machines will be a lot easier.

6. Conclusion and future work

We have shown our analysis and optimization strategies to inlJwove  the overall 1 J>crfor-
mance  of t he parallel lJCl  .A AGCM code on massive] y J~arallcl computers by implementing a load-
balanccd  IW1’ filtering module for the hydrodynamics wmponcnl, and a load-balancing module for
lhc physics component. l’crformanec cmnJ~arisons  of the AGCM codes with old and new spectral
filtering modules show that a speed-up of a factor 2 is achieved as a result  of our work on 240
nodes, and our anal ysis shows that  a load-bal anecd physics component could in~J~rovc  the A(iCh4
code pcrformanec by an additional 1 (El 57’0. We discussed our cffori on the single-node J>crfor-
mancc optimi?,a(ion  for selected subroutines from the A<iCM code, including the lessons wc
learned from our attempt to improve the cache efficiency, and a possibility to achieve better  singlc-
node performance for t hc ACiCM code by dcve]oping an opti mimd point wise vcct or-nmlt  ipl y rou -
tine, We also addressed our views on making better software design for (iCM  applications through
developing efficient and reusable code coJnponcn(s.  A conlJ>lctc implcnlcntation  of the loacl -balanc-
ing module for the physics component is being developed. single-node  performance-tuning is still
one of out main on-going cffork in the performance optimization on the A(iCM code.
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